Philadelphia University + Thomas Jefferson University

Research Projects

Research Projects

Determine how Chlamydia manipulates the host cytoskeleton during infection

file

Actin and microtubules are important cytoskeletal elements in eukaryotic cells. The cytoskeleton controls many cellular processes such as cell division and motility, as well as vesicle and organelle trafficking. Inside of its host cell, the human pathogen Chlamydia trachomatis rearranges the cytoskeleton to promote its survival and enhance its pathogenicity. In particular, Chlamydia induces the rearrangement of both actin and microtubules, which is vital for its entry, inclusion structure and development, and host cell exit. In this context, our laboratory seeks to understand the molecular machinery used by Chlamydia trachomatis to co-opt the host cytoskeleton and coordinate the reorganization of actin and microtubules. Furthermore, we study the impact of such reorganization on Chlamydia development and pathogenesis. 


Identify the role of the host SNARE proteins during Chlamydia infection

SNAREs are ubiquitously expressed proteins, conserved from yeast to humans, that mediate intracellular membrane fusion events. In fact, they constitute the core machinery necessary to mediate specific membrane fusion. As such, they are key regulators of all intracellular vesicle trafficking events and cargo transport steps. Therefore, manipulation of individual SNARE proteins or SNARE complexes may help Chlamydia to subvert normal trafficking patterns, while the specific recruitment of host SNAREs to the chlamydial inclusion would afford the pathogen the ability to manipulate vesicular trafficking during infection. In this project, we seek to analyze the contribution of various SNARE proteins to Chlamydia infection, notably we are creating a library of CRIPR/Cas9 knockout cell lines for specific SNAREs, which will then be screened during Chlamydiainfection.   


Identify how Chlamydia escapes the cell degradative pathway: involvement of bacterial SNARE-like proteins

file

In vertebrates, innate immune cells such as macrophages engulf bacteria in phagosomes. Phagosomes, in turn, fuse with lysosomes to destroy the bacteria. While most bacteria are destroyed during the process, Chlamydia survives and replicates within these cells by blocking fusion between their inclusions and lysosomes. Some strategies that Chlamydia uses to block phagosomal maturation include modifying the lipid composition of the inclusion and interfering with small GTPases involved in vesicular trafficking. Another efficient way to block phagosomal maturation would be to interfere with the host membrane fusion machinery, the so-called SNARE proteins. Interestingly, Chlamydia uses SNARE-like proteins to mimic the host SNAREs and interfere with membrane fusion. This particular project seeks to further characterize this inhibitory system and understand the specificity of the chlamydial SNARE-like proteins during infection.


Characterize the machinery that controls homotypic fusion of the inclusion

file

As an obligate intracellular bacterium, Chlamydia trachomatis replicates in an intracellular inclusion. When several bacteria infect a cell, they each develop in their own inclusion, which undergo homotypic fusion ~10-12 hours post-infection. This homotypic fusion event is critical for C. trachomatis pathogenicity as natural non-fusing Chlamydia mutants have replication defects, grow slower than their wild-type counterparts, and cause significantly milder symptoms in human. Recent work in our laboratory has characterized the inclusion membrane protein IncA, which is essential for membrane fusion. IncA shares significant sequence similarities with eukaryotic SNARE proteins. In this project, we seek to establish the 3D structure of IncA and establish whether it uses an α-helical structure to promote membrane fusion, similar to the eukaryotic SNARE fusion system. We also seek to identify the entire fusion machinery responsible for this unique bacterial event.