Philadelphia University + Thomas Jefferson University

Publications

Highlighted Publications

Basu, S, Rajakaruna, S, and Menko, AS (2012) Insulin-like growth factor receptor-1 and nuclear factor kappa B are crucial survival signals that regulate caspase-3 mediated lens epithelial cell differentiation initiation J Biol Chem. 287(11):8384-97. Epub 2012 Jan 24. PMID:22275359 PMCID:PMC3381865

This study reveals an IGF-1R signaling pathway that is a crucial regulator of caspase-3 activation, responsible for maintaining caspase-3 at the low level at which it functions in the initiation of lens epithelial cell differentiation.  


Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL (2014) A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol Biol Cell. 25(6):776-90. Epub 2014 Jan 29. PMID:24478454 PMCID:PMC3952848

This study shows that the lens contains a resident mesenchymal cell population that directs regenerative repair of the lens epithelium, post-cataract surgery, in a mechanism that is dependent on the function of the cytoskeletal protein vimentin.


Logan CM, Bowen, CJ, Menko AS (2017) Induction of immune surveillance of the dysmorphogenic lens. Sci Rep 7(1):16235. PMID:29176738 PMCID: PMC5701161

In this study with our lens-specific N-cadherin knockout mice, we discovered that the lens, previously considered immune privileged, is instead immune quiescent. Immune cells are recruited to these dysgenic lenses, likely migrating across LYVE-1-rich ciliary zonules, and are induced to become myofibroblasts associated with lens opacity.